RESTARTING AN ARNOLDI REDUCTION ~

R. B. LEHOUCQ!

Abstract. The Arnoldi reduction is an efficient procedure for approximating a subset of the
eigensystem of a large sparse matrix A of order n. At each step, a partial orthogonal reduction of A
into an upper Hessenberg matrix is produced. The eigenvalues of this Hessenberg matrix are used to
approximate a subset of the eigenvalues of the large matrix A. The approximation to the eigenvalues
of A generally improves as the order of the Hessenberg matrix increases. Unfortunately, so do the
cost and storage of the reduction.

A popular alternative is to define an iteration by restarting the reduction with information in a
length m < n Arnoldi reduction. The hope is that this restarted reduction has improved estimates
to the eigenvalues of A.

This paper considers the various approaches used to restart a reduction. Analysis and numeri-
cal examples are presented that explain and exhibit the generally superior properties of Sorensen’s
implicitly restarted Arnoldi iteration. The analysis exploits the fact that an IR A iteration is math-
ematically equivalent to a curtailed QR iteration.
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1. Introduction. The Arnoldi reduction [2] is an orthogonal projection method
for approximating a subset of the eigensystem of a general square matrix. Starting
with a vector x1, the reduction builds, step by step, an orthogonal basis for the Krylov
subspace of A:

Km(A,x1) = Span{x;, Axy,..., A" 'x,}.

It is a generalization of the power method in that a sequence of iterates are used to
approximate eigenvalues of A. At every step of the reduction, the projection of A
onto K, (A, x1) is computed. This projection is an upper Hessenberg matrix of order
m. The eigenvalues of this projection matrix are used as approximations to those of
A. Since the reduction requires knowledge of A only through matrix-vector products,
its value as a technique for approximating a few eigenvalues of a large sparse matrix
was soon realized. When the matrix A is symmetric, the Lanczos reduction [15] is
recovered.

More than a decade of research has been devoted to understanding and overcom-
ing the numerical difficulties of the Lanczos reduction. The works of Parlett [30] and
Cullum and Wiloughby [8] study in detail the many specifics of the Lanczos algo-
rithm, while the paper by Grimes, Lewis, and Simon [13] discusses the design and
development of high-quality software.

Development of the Arnoldi reduction lagged behind because of the inordinate
computational and storage requirements associated with the original method when a
large number of steps are required for convergence. The explicitly restarted Arnoldi
iteration (ERA iteration) was introduced by Saad [32] to overcome these difficulties,
based on similar ideas developed for the Lanczos process by Paige [27], Cullum and
Donath [7], and Golub and Underwood [11]. Karush [14] proposes what appears to
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be the first example of a restarted iteration. The iteration is defined by a two-stage
process. First, an Arnoldi/Lanczos reduction of length m < n is computed. From
information available in this reduction, another reduction is computed. This defines
the iteration and is deemed successful if improved estimates to the eigenvalues of A
appear in the subsequent reductions.

A relatively recent variant was developed by Sorensen [39] as a more efficient
and numerically stable way to implement restarting. This technique, the implicitly
restarted Arnoldi iteration (IRA iteration), may be viewed as a truncation of the stan-
dard implicitly shifted QRr-iteration. This viewpoint provides an alternate approach
to study restarted Arnoldi/Lanczos reductions in which the power of the Qr algo-
rithm is used. The immediate effect is the improvement of the numerical accuracy
and convergence properties of the ARPACK [19] software package.

The paper is organized as follows. Some notation and the real Schur decomposi-
tion are introduced in §2. The eigenvalue problem and Arnoldi reduction along with
more notation are the subject of §§3-4. The ERA and IRA iterations are examined in
§85—6, and an example comparing them is given §7. Three theorems that characterize
an IRA iteration are presented in §8. The polynomial accelerations techniques are
reviewed in §9 along with an improved ERA iteration that incorporates a deflation
scheme. Some results of a numerical study are given in §10, and a theorem on the
convergence of an IRA iteration is presented in §11. The paper is concluded in §12
with a discussion on some important practical issues.

2. Notation and Some Fundamentals. We shall now establish the basic no-
tation to be used during the course of this study.

We employ Householder notational conventions. Capital and lower-case letters de-
note matrices and vectors, respectively, while lower-case Greek letters denote scalars.
For clarity, upper-case matrices have a subscript to indicate the number of columns.
The identity matrix of order m is denoted by I,,. The jth canonical basis vector 1s
denoted by e;, the jth column of the identity matrix.

The transpose of a vector x is denoted by x7, and x¥ denotes the complex
conjugate of x7. The norms used are the Euclidean and Frobenius, denoted by || - ||
and || - ||F, respectively. The range of a matrix A is denoted by R(A).

2.1. Real Schur Decomposition. Since we are especially concerned with al-
gorithms that result in robust and efficient software, we focus on the following decom-
position, which is a special case of the more general Schur decomposition. The special
case allows us to compute strictly in real arithmetic. The proper resolution of complex
conjugate pairs of eigenvalues comes from noting that if A(x+iz) = (v +iu)(x +iz),
where x and z are vectors in R” with p # 0, then

(2.1) A[xz]:[xz][” “].

The following decomposition proves central to the eigenvalue algorithms consid-
ered in this paper. This decomposition is computed by the practical Qr algorithm in
the LAPACK [1] software library.

THEOREM 2.1. (Real Schur Decomposition) If A € R™*", there exists an orthog-
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onal Z € R™"*" such that

Ty Tz - Tim
. 0 Th - Toy

(2.2) Z7AzZ=| . " =T,
0 0 - T

where each Ty s a square block of order one or two. The blocks of order two contain
the complexr conjugate eigenvalues of A. The matrix T is said to be in upper quasi—
triangular matriz form.

Proof. See [10, page 362]. O

Let C be a quasi-diagonal orthogonal matrix with two by two blocks allowed only
where T has them. Then (ZC)T AZC = CTRC has diagonal blocks that are similar
to those of T. Thus, apart from the eigenvalues of multiplicity larger than one, the
decomposition is essentially unique, given some ordering of the eigenvalues. Denote
the leading principal matrix of k blocks of T by T} where no T;; is split. Let Zj be the
corresponding columns of Z. Then AZj = Z;Ty is a partial real Schur decomposition

of A of order k.

3. The Eigenvalue Problem. Let A be a real matrix of order n. We are in-
terested in a specified set of k < n solutions to the matrix eigenvalue problem

(3.1) Au = \u.

The eigenvalues and eigenvectors of A are denoted by A; and u;, respectively, for
j = 1,... n. We shall refer to these k£ eigenvalues as the wanted ones. The wanted
eigenvalues of A requiring approximation typically are contained within some convex
set of interest in the complex plane. Examples include those nearest the origin, and
of largest real part. An important exception might be the dominant eigenvalues of
A those largest in magnitude.

The Arnoldi methods studied in this paper attempt to compute a partial real
Schur decomposition for A with the group of the wanted eigenvalues located on the
diagonal blocks of T;. The methods considered require storage of O(kn). The full
decomposition requires (n?) storage. We say an eigenvalue problem is large if the
dense QR algorithm is prohibative, either in storage and/or efficiency.

A quasi-diagonal form for A exists if there 1s a nonsingular matrix V such that
AV = VD, where D is a block diagonal matrix with each block of order one or
two. The blocks of order two contain the complex conjugate pair of eigenvalues
as in equation (2.1) with p positive. The columns of V span the right eigenspace
corresponding to diagonal values of D. For the blocks of order two on the diagonal of
D, the corresponding complex eigenvector 1s stored in two consecutive columns of V|
the first holding the real part, and the second the imaginary part.

4. The Arnoldi Reduction. We first show how the Arnoldi reduction is ex-
tended from length m to m+ 1 where m < n. Table 4.1 summarizes the procedure. If
m = 1, then X; = x; represents the initial vector. H,, is an upper Hessenberg matrix
of order m while X,,, contains m vectors of length n that are mutually orthogonal.
The residual vector f,,, is orthogonal to the columns of X,,. In order to ensure that
f,, 1s orthogonal to the column space of X,, in finite-precision arithmetic, some form
of reorthogonalization is necessary at step 5. See Chapter 7 of [16].
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TABLE 4.1
Extending an Arnoldi Reduction

o Let AX,, =X,,H,. + fmeﬁ be a length m Arnoldi reduction.
1. 6m+1 = ||fm||
2. If 6m+1 ;é 0, then Xm+1 = fmﬁ;il-l;

else set X;,41 to be an unit vector orthogonal to the column space of X,,.
3. Xm+1 = [ Xm Xm+1 ] .
4. w = AXm+1 .
H,. XT w
5m+1eﬁ Xﬁ+1W
6. fm+1 = W—Xm+1Hm+1em+1.

5. Hm+1 =

The matrix H,, = X%, AX,, is the orthogonal projection of A onto the R(X,,) =
Km(A x1). The Hessenberg matrix Hy, is said to be unreduced if all of its subdiag-
onal elements §,, are nonzero. Note that the first subdiagonal element is §5. The
following classical result explains that an Arnoldi reduction is completely specified by
the starting vector.

THEOREM 4.1. (Implicit Q) Let two length m Arnoldi reductions be given by

AX,, = X Hy, + el
AV, =V, Gy +1pel,

where X, and V,, have orthonormal columns, and H,,, and G,, are upper Hessenberg
matrices with positive subdiagonal elements. If the first columns of X, and V,; are
equal, then H,, = G, , Xon =V, and £, =1,

Proof. See [10, page 367]. O

Let (s3,0;) for j =1,...,m be the eigenpairs of H,, where all the s; are of unit
length. The quality of the approximation of #; to an eigenvalue of A is determined
by observing that

|AX 85 — Xons05 ]| = [[fml] e, s;]-

We call z; = X,,8; a Ritz vector, 0; a Ritz value, and [|f,,|| |eL s;| the Ritz estimate.
Thus we may easily compute the norm of the residual of a Ritz pair and avoid the
application of A. We remark that a tiny Ritz estimate does not imply an accurate
approximation. We refer the reader to the work of Scott [37] for the many issues that
must be considered for assessing the quality of Ritz pairs computed by the Arnoldi
reduction.

As long as H,, is unreduced, standard results on upper Hessenberg matrices give
that e%sj cannot be equal to zero, although in practical computation, they decrease
in size as #; better approximates an eigenvalue of A. On the other hand, the vector
f,, vanishes at the first step m such that pn41(A,x1) = Kpn(A,x1) and hence is
guaranteed to vanish for some m < n. The following result indicates when we may
expect f,;, = 0. This is desirable because then the columns of X,,, form an orthogonal
basis for an invariant subspace and the eigenvalues of H,,, are those of A.

THEOREM 4.2. Let AX,, = X,,H,, —|—fmeg1 define a m-step Arnoldi reduction
of A, with Hy, unreduced. Then £, = 0 if and only if x, € R(Zy,), where AZy, =
Z,, T, 1s a partial real Schur decomposition.

Proof. See Chapter 2 of [16] or [39] for a proof based on the Jordan canonical
form. O
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TaABLE 5.1
FExplicitly Restarted Arnoldi Iteration

o Start: Build alength m Arnoldi reduction AX,, = XmHm—l—fmeﬁ with the starting
vector Xi.
o Jteration: Until convergence
1. Compute the eigensystem H,,S,, = S,,D,, ordered with the k wanted eigen-
values located in the leading portion of the quasi-diagonal matrix D,,.
2. Restart: Select the new starting vector x1 = X,y where y,,, € R™.
3. Build a length m Arnoldi reduction with x;.

In Theorem 4.2, the span of the m columns of Z,, represents an invariant sub-
space for A. In particular, the theorem gives that if the initial vector is a linear
combination of m eigenvectors, then f,,, vanishes. It is therefore desirable to devise a
method that forces the starting vector x; to lie in the invariant subspace associated
with the the wanted eigenvalues. We also remark that working in finite-precision
arithmetic generally removes the possibility of the computed residual ever vanishing
exactly. Suppose, however, that [|f,,|| is small. Let H,, V,,, = V,, Ty, be a real Schur
decomposition. Then (A + E, )X, Vi, = X, V,, Ty, is an exact real partial Schur
form for a nearby problem where E,,, = —f,,el VI XTI Note that ||E,|| = [|fm]]-

The algorithms of this paper are appropriate when the order of A is so large that
storage and computational requirements prohibit completion of the algorithm that
produces X,, and H,,.

5. An ERA Iteration. The basic explicitly restarted Arnoldi iteration is sum-
marised in Table 5.1.

The choice of m is usually a tradeoff between the length of the reduction that
may be tolerated and the rate of convergence. From the results on the convergence of
Krylov spaces [33, 36], the accuracy of the Ritz values typically increases as m does.
However, for increasing m, the number of Arnoldi vectors stored as well as the size
of the Hessenberg matrix increases. For most problems, the size of m is determined
experimentally. This issue is further addressed in §12.

The selection of the expansion coefficients in the vector y,, is the most unsettling
decision that needs to be made. Saad first suggested [32] choosing the coefficients
so that the slowest converging Ritz vectors are favored the most. For example, let
Ym — 8171+ +8p7e, where v; = |el s;| [|[fn]|(= [|AXn8i — Xmsi;||). The resulting
vector X,,¥,, 18 a linear combination of the wanted Ritz vector. When #; has a
nonzero imaginary part, we set s; and s;1 to be the real and imaginary portions of
the complex eigenvector of H,, associated with 6;.

6. An IRA Iteration. The ARPACK software package [19] implements an implic-
itly restarted Arnoldi method. Table 6.1 gives the basic algorithm as implemented
by ARPACK. The scheme is called implicit because the starting vector is updated with
an implicitly shifted QR algorithm on the Hessenberg matrix H,,. The method is
motivated by the following result.

LemMA 6.1. Let AX,, = X,,H,, —|—fmeg1 be a length m Arnoldi reduction and
¥(-) a polynomial of degree p = m — k where k < m.

If the QR factorization of (H,y,) [ e ey - ep ] = QiRy, then the columns
of XmQp are an orthogonal basis for R(¢¥(A)Xy).

Proof. A straightforward induction argument shows that

(6.1) PA)Xy = Xp(Hp) [ e es - e |.
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TABLE 6.1
An Implicitly Restarted Arnoldi Iteration as Implemented by ARPACK.

o Start: Build alength m Arnoldi reduction AX,, = XmHm—l—fmeﬁ with the starting
vector Xi.
o Jteration: Until convergence
1. Compute the eigensystem H,,S,, = S,,D,, ordered with the k wanted eigen-
values located in the leading portion of the quasi-diagonal matrix D,,.
2. Perform m — k = p steps of the QR iteration with the unwanted eigenvalues of
D,,, as shifts to obtain H,,Qn, = QmHL
3. Restart: Postmultiply the length m Arnoldi reduction with Qx to obtain the
length & Arnoldi reduction AX,,Qx = X,,QxH} + flrel. Note that Qy
represents the matrix consisting of the leading & columns of Q,, and HZ is
the leading principal submatrix of order k of H7,.
4. Extend the length & Arnoldi reduction to a length m one.

Compute the QR factorization ¢(H,,) [ e ey, - ep ] = QiR;. Equation (6.1)
may then be rewritten as ¢(A)X; = X, Qr Ry, and the lemmais proved. O

This is a generalization of the special case ¢(A) = A shown in [22]. A similar
result was proved by Paige, Parlett, and Van der Vorst in Lemma 1 of [28] for the
Lanczos reduction.

Restarting the iteration involves postmultiplying the length m Arnoldi factor-
ization with Qp and thus obtaining a length & factorization. The actual compu-
tation of Qg involves performing p steps of the QR algorithm on the current up-
per Hessenberg matrix, using the zeros of ¢ as shifts to obtain H,,Q,, = Q,H}.
This allows us to exploit the well-known connection between the Qr algorithm and
subspace iteration [42]. Equate the first & columns of H,, Q. = QnHJ to get
H,,Q; = QkHz' + 62’+1Qmek+1eg. Note that el Q; = (e%lek)eg, since Q,;, 1s of
lower bandwidth k, and thus

AX, Q= X H, Qp + frel Qp,
(6.2) = X QeH] + 5, X0 Qrertie] +fnel Qx,
=X, Q:H} +fel,

where f,;" = ﬁ;’_l_leQmekH —|—(eg1 Qrer)fy. Thus, an IRa-iteration may be viewed as
a truncated QR algorithm. One cycle of the iteration is illustrated in Figures 6.1-6.3.

7. Explicit and Implicit Restarting. We present a striking example that
compares the ERA and IRA iterations. Let A € R1%X10 be zero everywhere except for
diagonal elements

a1 =1, as=1,a33 =0,a44 = 0,05, = (5—4) - 107!, for i =1,...,6,

and ones on the subdiagonal. Suppose that the vector e is used to start both explicit
and implicitly restarted Arnoldi algorithms with & = 2 and m = 4 with the interest
to compute the two eigenvalues equal to one. Using an exact shift strategy, an IRA
iteration computes the approximate partial real Schur decomposition AQ, &~ Q2R
where

94919 95789

Ro™ 1 _96052.10-% 1.0508 |
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Fia. 6.1. The set of rectangles represents the matriz equation XpHpy + fmeﬁ of an Arnoldy
reduction. The unshaded region on the right is a zero matriz of m — 1 columns.
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Fia. 6.2. After performing m — r implicitly shifted QR steps on Hyn, the middle set of pictures
illustrates XQOHL + fmeﬁQm. The last p columns of fmeﬁQm are monzero because of the QR
iteration. f e _
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Fia. 6.3. After discarding the last m — r columns, the final set represents XkaHZ + flj'eg
of a length v Arnoldi factorization.

with eigenvalues equal to 1 4 i1.129168612228906 - 10~8. The number of iterations
needed was four, and a total of ten matrix vector products was computed.

However, the algorithm in Table 5.1 stagnates if the expansion coefficients are
chosen as originally proposed by Saad, as explained in §5. In fact, the starting vector
e is computed during every cycle of the ERA iteration! During every iteration,

H,

oo~ =
o~ O
— oo o
coc oo
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is computed. The MATLAB function EIG computes the two eigenvectors

si =[ 0 57735 .57735 .57735 ],

st = —sT +1.8-10718T

corresponding to the two eigenvalues equal to one. Choosing y4 to be an unit vec-
tor in the linear span of [ [[AX 481 — Xys1|| [JAX4s2 —Xysof| 0 0 ]T gives that
X4S4y4 = :I:el.

The explanation is simple enough. Although e; is orthogonal to the eigenspace
associated with the eigenvalue one of A 1t is not orthogonal to the invariant subspace
associated with the unit eigenvalue. This explains why the IRA-iteration converges
while the ERA iteration does not.

The major drawback of using a linear combination of the eigenvectors of H,, is
that they may form a poor choice for the starting vector. If H,, is defective, there
might not be enough eigenvectors associated with the wanted eigenvalues. A pair of
approximate eigenvectors i1s produced that are aligned to working precision. On the
other hand, using an expansion in terms of the Schur vectors of H,, gives a “richer”
starting vector. Theorem 8.1 gives that the IRA iteration implicitly uses a Schur basis
of H,,.

Golub and Wilkinson [12] examine the many practical difficulties involved when
computing invariant subspaces. They conclude that working with Schur vectors is a
better behaved numerical process. Within the context of subspace iteration, Stew-
art [41] also arrives at the same conclusion.

8. Characterzing an TR A Iteration. We present three theorems that explain
the behavoir of an 1RA iteration in exact arithmetic. The first theorem is a generaliza-
tion of Lemma 3.10 proved by Sorensen [39] and indicates what occurs when a certain
choice of shifts is used during an IRA iteration. There are two major differences. The
first is that there is no assumption on the existence of a basis of eigenvectors for the
desired invariant subspace. Only a Schur basis is used. The second is that we make
no assumptions on the multiplicities of the shifts applied.

THEOREM 8.1. Suppose H,, € R™*™ is an unreduced upper Hessenberg matriz
corresponding to a length m Arnoldi reduction AX,, = X,,H,, + fmeg1 and that the
eigenvalues of H,, are in the partition

{91,...,Hk}U{9k+1,...,9m}.

Assume that the complexr conjugate pairs of eigenvalues are kept together; 0; = éj
implies that 1,5 < k or i,j > k and that H,,Zy = ZyTy s a partial real Schur
decomposition, where the eigenvalues of Ty are 04,...,0;.

If m — k QR steps are performed with the eigenvalues Oy41,. .., 0, producing an
orthogonal matriz Q,, € R™*™ such that

_ Hf, HY,
(8.1) H,.Q. =Qn [ 0 HYL |
the eigenvalues oinl'l are 0, ...,0; and the first k columns of Q,,, span the associated

mvartant subspace.
Moreover, the updated starting vector X, Qmer € R(XmZy), and

(8.2) AX,,Qp = X, Q:HY, + (el Qrep)fnet
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1s the updated Arnoldi reduction of length k.

Proof. A result by Miminis and Paige [23, pages 391-395] proves equation (8.1).
They prove that if m — k QR steps are performed, the matrix equation (8.1) results if
and only if the m — k shifts are eigenvalues of H,,, regardless of their multiplicity.

Let Qr = Q [ e ey - e ], where H,, Q; = QkHil'l. Let H,,Zy, = Z;,Ty,,
be a real Schur decomposition where the eigenvalues of H}, and T} are the same.
Thus, the columns of Qj and Zj span the same invariant subspace. It follows that

X,nQmer = X Qrer = X Zi ZE Qrey = X0n Ziym,

where y,,, = Z%lel. Postmultiply the length m Arnoldi reduction with Q and use
equation (6.2) to obtain equation (8.2), since B,j'_l_l =0. 0

The restriction that keeps the complex conjugate pairs of eigenvalues together is
needed only so that the iteration may be done in real arithmetic.

Using the exact shifting strategy during the IRA iteration replaces the starting
vector with a linear combination of the wanted approximate Schur vectors. The
ERA iteration also has the same goal, but the IRA iteration performs this replacement
implicitly in a stable fashion by using a Schur basis of H,,,. Moreover, the IRA iteration
avoids the need to restart the next reduction from scratch.

The second result shows that the polynomial implicitly applied by an IRA iteration
using exact shifts 1s of minimal degree when we wish to restart an Arnoldi reduction
with a vector that is a linear combination of wanted spectral information in H,,.

THEOREM 8.2. Assume the same hypothesis of Theorem 8.1 with the addition
that the eigenvalues of Hy, are distinct. Let

m

vy =TT =4,

j=k+1

and denote the Ritz vectors by z; = X85, where Hy,s; = s;0;.
If x1 € Span{z1, ..., 25}, then for some polynomial ¢(A) of degree not exceeding
m—1,

)Acl = ¢(A)X1 ;

where (X)) = Y(A)x(A) for some polynomial x(A) of degree at most k — 1.

Proof. Let z; € Ky (A, x1). Then, for every j, there is polynomial p;(A) of degree
not exceeding m—1 such that z; = p;(A)x;. Thus x; = ¢(A)x; for some polynomial
#(A) of degree not exceeding m — 1. An easy consequence of equation (6.1) is that

&1 = qf)(A)Xl = q[)(A)Xmel = quS(Hm)el

Expand e1 = 1614+ - +Sm&m and hence 6(ElpJer = $16(01)¢1++ - 457 0(0m -
Since x1 € Span{zi,...,zx}, it follows that ¢(6;)& = 0 for j = k+1,...,n. De-
note the left eigenvectors of Hy, by v; indexed so that v}LIHm = vflﬁj. Since the
eigenvalues of H,, are distinct, the biorthogonality of the left and right eigenvectors
of H,, gives that vfel = vfsj@ and vfsj # 0 for j = 1,...,m. Standard results
on unreduced upper Hessenberg matrices give that vife; # 0. Hence & # 0, and so
#(0;) =0for j =k+1,...,m. Thus ¢)()) must be a divisor of ¢(}A), and the theorem
is proved. d

If the goal of restarting is to select an improved starting vector consisting of
only wanted Ritz vectors, Theorem 8.2 states that unwanted components might be
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introduced if the degree of the polynomial is greater than m — k. Since any starting
vector that is a linear combination of the columns of X, is equal to ¢(A)x; for some
polynomial ¢(-) of degree not exceeding m— 1, any linear combination of wanted Ritz
vectors as in §b is possibly introducing unwanted components.

The following result shows that the Krylov space associated with the subsequent
Arnoldi reduction computed after an implicit restart with exact shifts also has some
interesting subspaces. It is a slight generalization of Theorem 3 proved by Morgan [25].

THEOREM 8.3. Assume the same hypothesis and notation as Theorem 8.1 with
the additional hypothesis that £,, # 0. Suppose that m—k = p QR steps are performed
with the eigenvalues Op11, ..., 0m. If AXS = X+t HY +f1el is the length m Arnoldi
reduction that results from extending the compressed reduction of equation (8.2) and
H} is unreduced, then

(8.3) R(X}) = R(XmQr) U Span{Az;, ..., Alz;}

holds for each Ritz vector z; = X85, where Hy,s; = s;0; for j=1,... k.

Proof. Partition the eigenvalues of H,, as in the hypothesis of Theorem 8.1.
Let (s;,6;) be an eigenpair for H,,, where ||s;|| = 1, and set z; = X,,s;. Define
Xmt1 = Ln/||fn|| and Xfe; = x}" for j = 1,...,m. Standard results give that
XZ'_H = ¢ (A)x} for some polynomial ¥4 ()) of degree k.

Note that by equation (8.2) of Theorem 8.1, we have XZ'_H = Xm41- 1t also follows
that Aixz'_l_1 = Al (A)xT € Kpgiz1(A,xF) fori=1,...,m —k — 1, which implies
that

(8.4) Span{X,, Qi xf, ;... ., A" ki } CR{XE

We now show that these two sets share the same dimension.

Suppose that X, Qry1 + Km_k(A,x;_H)yz = 0 for some y = [ yI y? €
R™. Thus, there exists a polynomial ¢)(A) of degree less than m so that 1¥(A)x} = 0.
However, since H is unreduced, the grade of xi" is at least m, and hence y = 0,
which implies that the two sets in equation (8.4) are equal.

Using mathematical induction, we show that

]T

Aizj € Span{zj,xz'_l_l, Cel Ai_lxz_l_l},
fori=1,...,m—k. From the length m Arnoldi reduction, it follows that
Azj = 2;0; +fn(ey,87) = 2j0; + Xm1 (e8|l € Span{z;, x;f, ),

establishing the base case. Suppose that the result is true for positive integers ¢ — 1.
The inductive hypothesis implies that

Alz; € ANy
AS {z; + A2t }
S PanZ;, Xp 45 .-, X1
ESpan{z]',xz_l_l,...,Ai_lxz_l_l},

and the desired result follows. Now, since z; € R{X,,Q} and XZ__H = Yr(A)x], it
follows from the established equality of the two sets in equation (8.4) that

(8.5) Span{X,,Q, Az;, ..., A" Fz;1 C R{X}|}.
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If we use a similar argument to the one that followed equation (8.4), the two sets
in equation (8.5) are equal. The first conclusion of the theorem in equation (8.3) is
proved. d

In particular, if the eigenvectors sy, ..., s of H,, are linearly independent, then

(8.6) R(X7) = Kp(A,2)) Uizj Span{z; }

for j = 1,..., k. Morgan concludes that the Krylov subspace of length m generated
during each cycle of an IRA iteration with exact shifts contains all the Krylov subspaces
of dimension p + 1 generated from a wanted Ritz vector, since

Kpr1(A, 7)) C Km(A, X e1) = R(XHE).

9. Polynomial Accelerations Techniques. Suppose A is diagonalizable with

eigenpairs (u;, A;) for j = 1,... n. If ¢(-) is some polynomial and we expand the
current starting vector x; in terms of the basis of eigenvectors, then
(9.1) P(A)x1 = wP(A)C + -+ WY (A )Ca.

Assuming that the eigenpairs (u;, A;) are ordered so that the wanted k ones are at
the beginning of the expansion, we seek a polynomial such that

(9:2) jmax ()] < min ()]

A good polynomial (A) acts as a filter. Components in the direction of unwanted
eigenvectors are damped, or, equivalently, components in the direction of wanted
eigenvectors are amplified.

The acceleration techniques and hybrid methods presented by Saad in Chapter 7
of [36] attempt to improve the ERA iteration introduced in §5 by approximately solving
the min-max problem of equation (9.2). Motivated by Manteuffel’s scheme [20], Saad
first proposed the use of Chebyshev polynomials in [34]. A Chebyshev polynomial
¥(A) on an ellipse containing the unwanted Ritz values is applied to the restart
vector in an attempt to accelerate convergence of the orginal ErRA iteration. The
polynomial is applied with the use of the familiar three-term recurrence.

Table 9.1 outlines the procedure. It is called a deflated iteration because a partial
Schur decomposition is incrementaly built. We refer to the orthogonlization process
in line 2 as locking. At each iteration, the Ritz pairs of the unlocked portion of the
Arnoldi reduction are ordered with respect some criterion. For example, if the eigen-
values of largest magnitude are desired, the Ritz pair of interest is the one associated
with the Ritz that satisfies this criterion. In order to compute in real arithmetic, the
procedure outlined in §2 1s employed at line 2 if d; is not a real number.

10. Numerical Results. Lehoucq and Scott [17] presented a software survey of
large-scale eigenvalue methods and comparative results. The Arnoldi-based software
included the following three packages, which are available either in the public domain
or under licence. These are the ARNCHEB package [4], the ARPACK [19] software package,
and the Harwell Subroutine Library code EB13 [37].

The ARNCHEB package provides the subroutine ARNOL, which implements an explic-
itly restarted Arnoldi iteration. The code is based on the algorithm given in Table 9.1
without the use of locking. It uses Chebyshev polynomial acceleration.

The Harwell Subroutine Library code EB13 implements the algorithm given in
Table 9.1 and also uses Chebyshev polynomial acceleration.
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TaABLE 9.1
A deflated polynomual accelerated ERA iteration

e Build a length m Arnoldi reduction. Set 3y = 0 and define Qo and Ty as empty
matrices.
o lteration:
1. Compute the Ritz pair of interest (z1,61).
2. Check to see if (z1,6;) is an acceptable approximation. If so, increment j and
compute an unit vector q; in the direction of z; — Q;_1t; where t; = Q]T_l Z1.

T, t
Set Q; = [ Q1 q]]andTJ:[ Jol ei]

3. If y = k, exit the lteration.
4. Compute the Arnoldi reduction

AlQ Xoo | =[Q Xuo ] [ T, HI\:J_J + e, of length m

with starting vector ¥(A)X,,_;e; orthogonal to the R(Q;).

The ARPACK software package provides subroutine DNAUPD that implements an
implicitly restarted Arnoldi iteration.
We present results for the two-dimensional model convection-diffusion problem

—Au(z,y) + pV - Vu(z,y) = Au(z, y),

on the unit square [0,1] x [0, 1] with zero boundary data. Here, p represents the
convection and is a real number. The problem is discretized by using centered fi-
nite differences. The eigenvalues and eigenvectors of the resulting matrix are known
explicitly. This feature allows us to check the accuracy of our results.

The resulting matrix is interesting because of the following properties:

e Many of the eigenvalues have multiplicity two. It may be shown that if
|p| < +/n, the eigenvalues are all real and the matrix is diagonalizable.

e As the mesh size decreases, the relative separation of all the eigenvalues de-
creases. All the eigenvalues are contained within the interval (0, 8).

e As p increases, so does the nonnormality of the matrix.

We computed k = 6 eigenpairs of largest real part for a range of values of p and
for orders up to n = 10,000. Tables 10.1 and 10.2 display the results of experiments
run on an IBM RS/6000 3BT in double-precision arithmetic for two specific matrices.
The column heading WHICH gives the portion of the spectrum the respective code
was asked to compute. The eigenvalues of largest real part are also those of largest
modulus. They are respectively denoted by WHICH = ‘LR’ and ‘LM’. The length of
the Arnoldi reduction generated is denoted by m. All the Ritz pairs computed were
checked and gave residuals of order @(1071%) with at least seven digits of accuracy for
the Ritz values. The numerical orthogonality of the Arnoldi vectors was also checked.

The results show that the implementation of the IRA iteration significantly reduces
the total number of matrix vector products required. For many large-scale eigenvalue
problems, the dominant cost is that of performing the matrix-vector products. For
these two examples, ARPACK reliably computed the multiplicities. Changing WHICH
has the effect of modifying the restart parameters. For further information and other
experiments, we refer the reader to [17].

11. Convergence of an IRA Iteration. Sorensen gives a convergence theo-
rem [39, pages 369-370] for an IRA iteration where the polynomial applied at every
restart is fixed. The main result of this section gives conditions that determine the
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TaBLE 10.1
CPU times (in seconds) and matriz-vector products for the CDDE matriz with p = 10 of order
2500. (T denotes that one or more of the requested eigenvalues was missed; = denotes that code did
not converge within 4000 m-dimensional matriz-vector products).

Subspace Dimension m

Algorithm  WHICH 18 36

ARNCHEB LR i i

ARPACK LM 8.6/620 12/694

ARPACK LR 8.3/602 11/613

EB13 LM i 46/3383

EB13 LR 41/12178 *
TABLE 10.2

CPU times (in seconds) and matriz-vector products for the CDDE matriz with p = 15 of order
10000 (x denotes that code did not converge within 4000 m-dimensional matriz-vector products)

Subspace Dimension m

Algorithm  WHICH 18 36
ARNCHEB LR * *
ARPACK LM 71/1123 103/1398
ARPACK LR 61/991 80/1095
EB13 LM 727/20004 4367263
EB13 LR 1251/74107 *

convergence of an IRA iteration where the polynomial applied at every restart may
vary. Our approach exploits the fact that an IRA iteration is a curtailed QR iteration
and thus allows us to use this well-established convergence theory on upper Hessen-
berg matrices. As mentioned in §2.1, computing a partial real Schur decomposition
corresponding to a small subset of the eigenvalues of A is the objective.

Let ! = p1+ -+ p,, where r designates how many restarts are performed, p; the
degree of the polynomial applied at the ¢th restart, and Zg,l@) the accumlation of all
the orthogonal matrices applied through the QR iterations. Using the relationships
derived through equation (6.2), we write the length &£ Arnoldi reduction as

(11.1) AX,, 7" = x,z"HD 1 £Vel

where Zg) = Zg@) [ e ey - e ] and X,, denotes the initial reduction to Hes-
senberg form. Thus, we may examine the convergence of an IRA iteration by studying

the convergence of XmZg) to an invariant subspace of dimension k. Since the Implicit

Q theorem (see §4) gives that Hg) is the leading principal matrix of order k of Hg)
that would be obtained if we performed the full Qr algorithm on the full Hessenberg
matrix H, , we study the convergence of the shifted Qr iteration.

A convergence theory for the shifted QR iteration was presented by Watkins and
Elsner [43] within the more general framework of generic GR algorithms. A GR
algorithm is an iterative procedure such as the QR iteration where the QR factorization
is replaced with a decomposition of the form G,R,, = H, — 7I,, where R,, is upper
triangular and G,, is a nonsingular matrix.

THEOREM 11.1. Let H, € R"*" be an unreduced upper Hessenberg matriz and
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W(A) be a polynomial. Order the eigenvalues Ay, Ae, ... Ay of H so that |¥(Ay)| >
WO > > [,

Let H,Z,, = Z, T, be a real Schur decomposition where the first k columns of Z,,
span an nvariant subspace corresponding to the eigenvalues Ay, ..., Ap. Suppose k is
a positive integer less than n such that pp = |$(Apy)|/|¥(Ap)] < 1.

If a sequence of shifts {r;}!_, has the properties that Hi’:1 7; 18 a real number and

'Pl(/\i)E(/\i—T1)~~~(/\Z'—Tl)—>\IJ(/\Z'), t=k+1,...,n
PiN) £ 0, i=1,...k

as | — oo, the QR iteration computes anﬁl” = Zg)Hg), where

l l
mp=| 0|
k+1e1eg H, Z,

and Zg) 1s an orthogonal matriz such that for every value of py, satisfying pp < pr < 1,
there exists a constant C' such that |ﬁl(€l_|)_1| < C(pg)' and
‘ 0 P
dist(Zy, Z,,") < C(pr)’,

where Zg) contains the first k columns of Zg).

Proof. See Theorems 5.4 and 6.2 of Watkins and Elsner [43]. O

If we partition the eigenvalues of A so that A1, ..., Ay are the sought-after eigen-
values, then

n

(11.2) ()= [ =),

i=k+1

is an example of the polynomial used by the theorem. The theorem gives the con-
vergence rate of Bl(clq)q to zero, given a shifting strategy. Note that by the Implicit Q

theorem (see §4) and equation (11.1), ||flgl)|| = 6](61_?_1. The shifting strategy has the
effect of replacing the starting vector, thereby restarting the reduction. Thus, the

convergence of an IRA iteration is established.
The distance between the subspaces [6, 10] R(Zy) and R(Zg)) may be shown

to be equal to /1 — ||Z{Z§€l)||2. For increasing values of [, the approximate Schur

basis vectors contained in Zg) span R(Zy). Thus, the dist(Zk,Zg)) — 0, and the
eigenvalues of Hg) tend to Ay, ..., Ag. It follows from the theorem that for all values

of k such that p; < 1, the kth subdiagonal element of Hg) tends to zero. The
hypothesis on the product of the shifts ensures that if one is applied with a nonzero
imaginary part, its complex conjugate is also a shift.

The theorems proved by Watkins and Elsner in [43] identify the convergence of the
QR algorithm with that of simultaneous iteration, or subspace iteration. Parlett [29]
presents the first set of comprehensive sufficient conditions for convergence of the
QR iteration on Hessenberg matrices, while a portion of the paper by Parlett and
Poole [31] considers a geometric convergence theory for Hessenberg matrices.
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12. Practical Considerations. We have shown a direct connection between
the TRA and QR iterations. With this connection, we believe that reliable general-
purpose software for the large-scale eigenvalue problem is possible. The practical
QR algorithm [21] resulted when deflation rules and practical shifting strategies were
incorporated. These techniques are extremely important for the convergence and
stability of the iteration. They have contributed to the emergence of the practical Qr
algorithm as the method of choice for computing the eigensystem of dense matrices. In
particular, the deflation rules allow the QR iteration to compute multiple and clustered
eigenvalues. The reader is referred to [18] for a detailed study on deflation strategies
for an IRA iteration. The remainder of this section discusses shifting strategies. We
remark that the shifting strategy of the practical Qr algorithm cannot by employed
because it requires the full reduction to upper Hessenberg form at every iteration.

Although useful for characterzing the convergence of an IRA iteration, Theo-
rem 11.1 gives no indication on how well P;(-) must approximate the polynomial
W()), let alone a practical shifting strategy. This is the subject of current research.
We have examined one particular choice of polynomial, namely, one constructed from
the unwanted Ritz values at every iteration. Other interesting strategies include the
roots of Chebyshev polynomials [34], Harmonic Ritz values [24, 26, 28, 38], the roots
of Leja polynomials [3, 5], and the roots of least squares polynomials [35]. In partic-
ular, the Harmonic Ritz values have been used to estimate the interior eigenvalues of
A.

There also remains the interesting question of how many shifts p; to apply per
iteration. For example, if ¥(A) = A" with |A;| > |Ar41], then using zero shifts gives
that Bl(clq)q goes to zero with the convergence rate of |Agy1/Ag]. It is well known that
performing subspace iteration on a subspace of dimension larger than the number of
eigenvalues required typically leads to improved convergence rates; see the paper of
Duff and Scott [9] for a discussion and further references.

(D

For more general shifting strategies, we can expect [ to converge with the

k+1
convergence rate of
(12.1) 2 PO )
' min [P(A)] T [U()]
1<i<k

For example, if we use the unwanted Ritz values as shifts and ¥(A) is defined as in
equation (11.2), the convergence rate is approximately given by the ratio in the left
hand side of equation (12.1). Since the ratio is a complicated function involving the
shifts applied, it is not obvious how to select the optimal value of p; that leads to
the optimal convergence. An adaptive strategy should be possible because we have
a connection with subspace iteration. This connection may eventually shed light on
how many shifts to apply per restart, in other words, how to select p; relative to k.
Another interesting approach is a variation of the algorithm in Table 9.1. As
in that algorithm, a partial Schur decomposition is built for the wanted Ritz values
that are good approximations to the desired eigenvalues Ay, ... A;. Let j denote the
number of locked vectors. The only difference is in the way the restart is performed.
First, a set of m — j shifts is determined. The shifts are the roots of a polynomial
that is small on the unwanted eigenvalues 611,...,0,_; of H,_;. The polynomial
of degree m — j defined by these shifts is implicitly applied via an IRA iteration. This
approach differs from the IRA iteration outlined in Table 6.1 in two ways. The first is
that of deflation. The other difference is that a large-degree polynomial is applied at
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every step. For symmetric A, Baglama, Calvetti, and Reichel [3] use Leja shifts, and
this strategy outperforms ARPACK for small m. ARPACK uses a polynomial of degree
at most m — k as compared with the degree m — j polynomial used by the deflated
approach. Other polynomials and nonsymmetric A should be investigated.
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